## Config System config system for ssds.pytorch ### MODEL | MODEL parameters | discription | |---|---| | MODEL.NETS | type of the backbone used to extract the features | | MODEL.SSDS | type of the ssds model used to detect boundingbox | | MODEL.IMAGE_SIZE | image size for ssd | | MODEL.NUM_CLASSES | number of the class for the model | | MODEL.FEATURE_LAYER | FEATURE_LAYER to extract the proposed bounding box, the first dimension is the feature layer/type, while the second dimension is feature map channel. | | MODEL.SIZES | SIZES for the proposed anchor box, 1 is default contains | | MODEL.ASPECT_RATIOS | ASPECT_RATIOS for the proposed anchor box, 1 is default contains | ### TRAIN | TRAIN parameters | discription | |---|---| | TRAIN.BATCH_SIZE | batch size for training | | TRAIN.TRAINABLE_SCOPE | trainable scope | | TRAIN.RESUME_SCOPE | resuming scope | | TRAIN.MAX_EPOCHS | the number of max epoch | | TRAIN.CHECKPOINTS_EPOCHS | the number of interval epoch for checkpoints saving | | TRAIN.CHECKPOINTS_KEPT | The number of checkpoints kept, older ones are deleted to save space | #### TRAIN.OPTIMIZER | TRAIN.OPTIMIZER parameters | discription | |---|---| | TRAIN.OPTIMIZER.OPTIMIZER | type of the optimizer | | TRAIN.OPTIMIZER.LEARNING_RATE | Initial learning rate | | TRAIN.OPTIMIZER.DIFFERENTIAL_LEARNING_RATE | Initial differential learning rate for different layers | | TRAIN.OPTIMIZER.MOMENTUM | Momentum | | TRAIN.OPTIMIZER.MOMENTUM_2 | Momentum_2 | | TRAIN.OPTIMIZER.EPS | epsilon | | TRAIN.OPTIMIZER.WEIGHT_DECAY | Weight decay, for regularization | #### TRAIN.LR_SCHEDULER | TRAIN.LR_SCHEDULER parameters | discription | |---|---| | TRAIN.LR_SCHEDULER.SCHEDULER | type of the LR_SCHEDULER | | TRAIN.LR_SCHEDULER.STEPS | Step size for reducing the learning rate | | TRAIN.LR_SCHEDULER.GAMMA | Factor for reducing the learning rate | | TRAIN.LR_SCHEDULER.LR_MIN | min learning rate | ### TEST | TEST parameters | discription | |---|---| | TEST.BATCH_SIZE | batch size for test | | TEST.TEST_SCOPE | the epoch scope for test | ### POST_PROCESS POST_PROCESS controls the parameter for ssds.modeling.layers.decoder.Decoder. which is used to decode the loc and conf feature maps to predicted boxes. | POST_PROCESS parameters | discription | |---|---| | POST_PROCESS.SCORE_THRESHOLD | the score threshold to filter the predict boxes, put it as 0.01 for evaluation | | POST_PROCESS.IOU_THRESHOLD | the iou threshold to filter the predict boxes | | POST_PROCESS.MAX_DETECTIONS | the max detection boxes for the final predicted output of ssds model | | POST_PROCESS.MAX_DETECTIONS_PER_LEVEL | the max detection boxes for the each level output of ssds detect heads | | POST_PROCESS.USE_DIOU | whether using diou to replace the iou in the nms part | | POST_PROCESS.RESCORE_CENTER | whether rescore the boxes based on its anchor center location | ### DATASET | DATASET parameters | discription | |---|---| | DATASET.DATASET | type of the dataset | | DATASET.DATASET_DIR | path to the dataset folder | | DATASET.TRAIN_SETS | train set scope | | DATASET.TEST_SETS | test set scope | | DATASET.PICKLE | whether use pickle to saved images and annotation (only works for Non-DALI dataset) | | DATASET.NUM_WORKERS | 8 (only works for Non-DALI dataset) | | DATASET.DEVICE_ID | the list of devices used to distributaed the data loading (only works for apex parrellel training)) | | DATASET.MULTISCALE | list of image size used for multiscale training | ### DATASET.PREPROC | DATASET.PREPROC parameters | discription | |---|---| | DATASET.PREPROC.MEAN | float, the mean for normalization | | DATASET.PREPROC.STD | float, the std for normalization | | DATASET.PREPROC.CROP_SCALE | list, the lower and upper bounder size for ssd random crop | | DATASET.PREPROC.CROP_ASPECT_RATIO | list, the lower and upper bounder aspect ratio for ssd random crop | | DATASET.PREPROC.CROP_ATTEMPTS | int, the numbder attempts to do the ssd random crop | | DATASET.PREPROC.HUE_DELTA | float, hue delta | | DATASET.PREPROC.BRI_DELTA | float, brightness delta | | DATASET.PREPROC.CONTRAST_RANGE | list, the lower and upper bounder for contrast | | DATASET.PREPROC.SATURATION_RANGE | list, the lower and upper bounder for saturation | | DATASET.PREPROC.MAX_EXPAND_RATIO | float, the max expand ratio for padding | ### Others | Others parameters | discription | |---|---| | EXP_DIR | the export dir | | LOG_DIR | the log dir | | RESUME_CHECKPOINT | The checkpoint used to resume | | PHASE | The phases | | DEVICE_ID | the list of devices used to distributaed the model training |