import torch
from torchvision import transforms
import cv2
import numpy as np
import types
from numpy import random
[docs]def intersect(box_a, box_b):
    max_xy = np.minimum(box_a[:, 2:], box_b[2:])
    min_xy = np.maximum(box_a[:, :2], box_b[:2])
    inter = np.clip((max_xy - min_xy), a_min=0, a_max=np.inf)
    return inter[:, 0] * inter[:, 1] 
[docs]def jaccard_numpy(box_a, box_b):
    """Compute the jaccard overlap of two sets of boxes.  The jaccard overlap
    is simply the intersection over union of two boxes.
    E.g.: A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
    Args:
        box_a: Multiple bounding boxes, Shape: [num_boxes,4]
        box_b: Single bounding box, Shape: [4]
    Return:
        jaccard overlap: Shape: [box_a.shape[0], box_a.shape[1]]
    """
    inter = intersect(box_a, box_b)
    area_a = ((box_a[:, 2]-box_a[:, 0]) *
              (box_a[:, 3]-box_a[:, 1]))  # [A,B]
    area_b = ((box_b[2]-box_b[0]) *
              (box_b[3]-box_b[1]))  # [A,B]
    union = area_a + area_b - inter
    return inter / union  # [A,B] 
[docs]class Compose(object):
    """Composes several augmentations together.
    Args:
        transforms (List[Transform]): list of transforms to compose.
    Example:
        >>> augmentations.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
    """
    def __init__(self, transforms):
        self.transforms = transforms
    def __call__(self, img, boxes=None, labels=None):
        for t in self.transforms:
            img, boxes, labels = t(img, boxes, labels)
        return img, boxes, labels 
[docs]class Lambda(object):
    """Applies a lambda as a transform."""
    def __init__(self, lambd):
        assert isinstance(lambd, types.LambdaType)
        self.lambd = lambd
    def __call__(self, img, boxes=None, labels=None):
        return self.lambd(img, boxes, labels) 
[docs]class ConvertFromInts(object):
    def __call__(self, image, boxes=None, labels=None):
        return image.astype(np.float32), boxes, labels 
[docs]class ToAbsoluteCoords(object):
    def __call__(self, image, boxes=None, labels=None):
        height, width, channels = image.shape
        boxes[:, 0] *= width
        boxes[:, 2] *= width
        boxes[:, 1] *= height
        boxes[:, 3] *= height
        return image, boxes, labels 
[docs]class ToPercentCoords(object):
    def __call__(self, image, boxes=None, labels=None):
        height, width, channels = image.shape
        boxes[:, 0] /= width
        boxes[:, 2] /= width
        boxes[:, 1] /= height
        boxes[:, 3] /= height
        return image, boxes, labels 
[docs]class Resize(object):
    def __init__(self, size:tuple):
        self.size = size
    def __call__(self, image, boxes=None, labels=None):
        image = cv2.resize(image, self.size)
        return image, boxes, labels 
[docs]class RandomSaturation(object):
    def __init__(self, lower=0.5, upper=1.5):
        self.lower = lower
        self.upper = upper
        assert self.upper >= self.lower, "contrast upper must be >= lower."
        assert self.lower >= 0, "contrast lower must be non-negative."
    def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            image[:, :, 1] *= random.uniform(self.lower, self.upper)
        return image, boxes, labels 
[docs]class RandomHue(object):
    def __init__(self, delta=18.0):
        assert delta >= 0.0 and delta <= 360.0
        self.delta = delta
    def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            image[:, :, 0] += random.uniform(-self.delta, self.delta)
            image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0
            image[:, :, 0][image[:, :, 0] < 0.0] += 360.0
        return image, boxes, labels 
[docs]class RandomLightingNoise(object):
    def __init__(self):
        self.perms = ((0, 1, 2), (0, 2, 1),
                      (1, 0, 2), (1, 2, 0),
                      (2, 0, 1), (2, 1, 0))
    def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            swap = self.perms[random.randint(len(self.perms))]
            shuffle = SwapChannels(swap)  # shuffle channels
            image = shuffle(image)
        return image, boxes, labels 
[docs]class ConvertColor(object):
    def __init__(self, current='BGR', transform='HSV'):
        self.transform = transform
        self.current = current
    def __call__(self, image, boxes=None, labels=None):
        if self.current == 'BGR' and self.transform == 'HSV':
            image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
        elif self.current == 'HSV' and self.transform == 'BGR':
            image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
        else:
            raise NotImplementedError
        return image, boxes, labels 
[docs]class RandomContrast(object):
    def __init__(self, lower=0.5, upper=1.5):
        self.lower = lower
        self.upper = upper
        assert self.upper >= self.lower, "contrast upper must be >= lower."
        assert self.lower >= 0, "contrast lower must be non-negative."
    # expects float image
    def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            alpha = random.uniform(self.lower, self.upper)
            image *= alpha
        return image, boxes, labels 
[docs]class RandomBrightness(object):
    def __init__(self, delta=32):
        assert delta >= 0.0
        assert delta <= 255.0
        self.delta = delta
    def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            delta = random.uniform(-self.delta, self.delta)
            image += delta
        return image, boxes, labels 
[docs]class ToCV2Image(object):
    def __call__(self, tensor, boxes=None, labels=None):
        return tensor.cpu().numpy().astype(np.float32).transpose((1, 2, 0)), boxes, labels 
[docs]class ToTensor(object):
    def __call__(self, cvimage, boxes=None, labels=None):
        return torch.from_numpy(cvimage.astype(np.float32)).permute(2, 0, 1), boxes, labels 
[docs]class RandomSampleCrop(object):
    """Crop
    Arguments:
        img (Image): the image being input during training
        boxes (Tensor): the original bounding boxes in pt form
        labels (Tensor): the class labels for each bbox
        mode (float tuple): the min and max jaccard overlaps
    Return:
        (img, boxes, classes)
            img (Image): the cropped image
            boxes (Tensor): the adjusted bounding boxes in pt form
            labels (Tensor): the class labels for each bbox
    """
    def __init__(self, scale=(0.3,1.), ratio=(0.5,2), num_attempts=50):
        self.scale = scale
        self.ratio = ratio
        self.num_attempts = num_attempts
        self.sample_options = (
            # using entire original input image
            None,
            # sample a patch s.t. MIN jaccard w/ obj in .1,.3,.5,.7,.9
            (0.1, None),
            (0.3, None),
            (0.5, None),
            (0.7, None),
            (0.9, None),
            # randomly sample a patch
            (None, None),
        )
    def __call__(self, image, boxes=None, labels=None):
        height, width, _ = image.shape
        while True:
            # randomly choose a mode
            mode = random.choice(self.sample_options)
            if mode is None:
                return image, boxes, labels
            min_iou, max_iou = mode
            if min_iou is None:
                min_iou = float('-inf')
            if max_iou is None:
                max_iou = float('inf')
            # max trails (50)
            for _ in range(self.num_attempts):
                current_image = image
                w = random.uniform(self.scale[0] * width,  self.scale[1] * width)
                h = random.uniform(self.scale[0] * height, self.scale[1] * height)
                # aspect ratio constraint b/t .5 & 2
                if h / w < self.ratio[1] or h / w > self.ratio[0]:
                    continue
                left = random.uniform(width - w)
                top = random.uniform(height - h)
                # convert to integer rect x1,y1,x2,y2
                rect = np.array([int(left), int(top), int(left+w), int(top+h)])
                # calculate IoU (jaccard overlap) b/t the cropped and gt boxes
                overlap = jaccard_numpy(boxes, rect)
                # is min and max overlap constraint satisfied? if not try again
                if overlap.min() < min_iou and max_iou < overlap.max():
                    continue
                # cut the crop from the image
                current_image = current_image[rect[1]:rect[3], rect[0]:rect[2],
                                              :]
                # keep overlap with gt box IF center in sampled patch
                centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0
                # mask in all gt boxes that above and to the left of centers
                m1 = (rect[0] < centers[:, 0]) * (rect[1] < centers[:, 1])
                # mask in all gt boxes that under and to the right of centers
                m2 = (rect[2] > centers[:, 0]) * (rect[3] > centers[:, 1])
                # mask in that both m1 and m2 are true
                mask = m1 * m2
                # have any valid boxes? try again if not
                if not mask.any():
                    continue
                # take only matching gt boxes
                current_boxes = boxes[mask, :].copy()
                # take only matching gt labels
                current_labels = labels[mask]
                # should we use the box left and top corner or the crop's
                current_boxes[:, :2] = np.maximum(current_boxes[:, :2],
                                                  rect[:2])
                # adjust to crop (by substracting crop's left,top)
                current_boxes[:, :2] -= rect[:2]
                current_boxes[:, 2:] = np.minimum(current_boxes[:, 2:],
                                                  rect[2:])
                # adjust to crop (by substracting crop's left,top)
                current_boxes[:, 2:] -= rect[:2]
                return current_image, current_boxes, current_labels 
[docs]class Expand(object):
    def __init__(self, mean=0, max_expand_ratio=2):
        """
        Args:
            max_expand_ratio: Ratio of canvas size to input size, must be > 1.
        """
        self.mean = mean
        self.max_expand_ratio = max_expand_ratio
    def __call__(self, image, boxes, labels):
        if random.randint(2):
            return image, boxes, labels
        height, width, depth = image.shape
        ratio = random.uniform(1, self.max_expand_ratio)
        left = random.uniform(0, width*ratio - width)
        top = random.uniform(0, height*ratio - height)
        expand_image = np.zeros(
            (int(height*ratio), int(width*ratio), depth),
            dtype=image.dtype)
        expand_image[:, :, :] = self.mean
        expand_image[int(top):int(top + height),
                     int(left):int(left + width)] = image
        image = expand_image
        boxes = boxes.copy()
        boxes[:, :2] += (int(left), int(top))
        boxes[:, 2:] += (int(left), int(top))
        return image, boxes, labels 
[docs]class RandomMirror(object):
    def __call__(self, image, boxes, classes):
        _, width, _ = image.shape
        if random.randint(2):
            image = image[:, ::-1]
            boxes = boxes.copy()
            boxes[:, 0::2] = width - boxes[:, 2::-2]
        return image, boxes, classes 
[docs]class SwapChannels(object):
    """Transforms a tensorized image by swapping the channels in the order
    specified in the swap tuple.
    Args:
        swaps (int triple): final order of channels, (2, 1, 0)
    """
    def __init__(self, swaps):
        self.swaps = swaps
    def __call__(self, image):
        """
        Args:
            image (Tensor): image tensor to be transformed
        Returns:
            a tensor with channels swapped according to swap
        """
        # if torch.is_tensor(image):
        #     image = image.data.cpu().numpy()
        # else:
        #     image = np.array(image)
        image = image[:, :, self.swaps]
        return image 
[docs]class PhotometricDistort(object):
    def __init__(self, hue_delta=18., bri_delta=32, 
                       contrast_range=(0.5,1.5), 
                       saturation_range=(0.5,1.5)):
        self.pd = [
            RandomContrast(*contrast_range),
            # temp remove
            # ConvertColor(transform='HSV'),
            # RandomSaturation(*saturation_range),
            # RandomHue(delta=hue_delta),
            # ConvertColor(current='HSV', transform='BGR'),
            # RandomContrast(*contrast_range)
        ]
        self.rand_brightness = RandomBrightness(delta=bri_delta)
        # self.rand_light_noise = RandomLightingNoise()
    def __call__(self, image, boxes, labels):
        im = image.copy()
        im, boxes, labels = self.rand_brightness(im, boxes, labels)
        if random.randint(2):
            distort = Compose(self.pd[:-1])
        else:
            distort = Compose(self.pd[1:])
        im, boxes, labels = distort(im, boxes, labels)
        # return self.rand_light_noise(im, boxes, labels)
        return im, boxes, labels 
[docs]class ToGPU(object):
    def __call__(self, img, boxes, labels):
        return img.cuda(), boxes, labels 
[docs]class Normalize(object):
    def __init__(self, mean=0, std=255):
        self.mean = mean
        self.std  = std
    def __call__(self, img, boxes, labels):
        img = (img - self.mean) / self.std
        return img, boxes, labels 
[docs]class ToXYWH(object):
    def __call__(self, img, boxes, labels):
        boxes[:,2:] -= boxes[:,:2]
        return img, boxes, labels