Config System

config system for ssds.pytorch

MODEL

MODEL parameters discription
MODEL.NETS type of the backbone used to extract the features
MODEL.SSDS type of the ssds model used to detect boundingbox
MODEL.IMAGE_SIZE image size for ssd
MODEL.NUM_CLASSES number of the class for the model
MODEL.FEATURE_LAYER FEATURE_LAYER to extract the proposed bounding box, the first dimension is the feature layer/type, while the second dimension is feature map channel.
MODEL.SIZES SIZES for the proposed anchor box, 1 is default contains
MODEL.ASPECT_RATIOS ASPECT_RATIOS for the proposed anchor box, 1 is default contains

TRAIN

TRAIN parameters discription
TRAIN.BATCH_SIZE batch size for training
TRAIN.TRAINABLE_SCOPE trainable scope
TRAIN.RESUME_SCOPE resuming scope
TRAIN.MAX_EPOCHS the number of max epoch
TRAIN.CHECKPOINTS_EPOCHS the number of interval epoch for checkpoints saving
TRAIN.CHECKPOINTS_KEPT The number of checkpoints kept, older ones are deleted to save space

TRAIN.OPTIMIZER

TRAIN.OPTIMIZER parameters discription
TRAIN.OPTIMIZER.OPTIMIZER type of the optimizer
TRAIN.OPTIMIZER.LEARNING_RATE Initial learning rate
TRAIN.OPTIMIZER.DIFFERENTIAL_LEARNING_RATE Initial differential learning rate for different layers
TRAIN.OPTIMIZER.MOMENTUM Momentum
TRAIN.OPTIMIZER.MOMENTUM_2 Momentum_2
TRAIN.OPTIMIZER.EPS epsilon
TRAIN.OPTIMIZER.WEIGHT_DECAY Weight decay, for regularization

TRAIN.LR_SCHEDULER

TRAIN.LR_SCHEDULER parameters discription
TRAIN.LR_SCHEDULER.SCHEDULER type of the LR_SCHEDULER
TRAIN.LR_SCHEDULER.STEPS Step size for reducing the learning rate
TRAIN.LR_SCHEDULER.GAMMA Factor for reducing the learning rate
TRAIN.LR_SCHEDULER.LR_MIN min learning rate

TEST

TEST parameters discription
TEST.BATCH_SIZE batch size for test
TEST.TEST_SCOPE the epoch scope for test

POST_PROCESS

POST_PROCESS controls the parameter for ssds.modeling.layers.decoder.Decoder. which is used to decode the loc and conf feature maps to predicted boxes.

POST_PROCESS parameters discription
POST_PROCESS.SCORE_THRESHOLD the score threshold to filter the predict boxes, put it as 0.01 for evaluation
POST_PROCESS.IOU_THRESHOLD the iou threshold to filter the predict boxes
POST_PROCESS.MAX_DETECTIONS the max detection boxes for the final predicted output of ssds model
POST_PROCESS.MAX_DETECTIONS_PER_LEVEL the max detection boxes for the each level output of ssds detect heads
POST_PROCESS.USE_DIOU whether using diou to replace the iou in the nms part
POST_PROCESS.RESCORE_CENTER whether rescore the boxes based on its anchor center location

DATASET

DATASET parameters discription
DATASET.DATASET type of the dataset
DATASET.DATASET_DIR path to the dataset folder
DATASET.TRAIN_SETS train set scope
DATASET.TEST_SETS test set scope
DATASET.PICKLE whether use pickle to saved images and annotation (only works for Non-DALI dataset)
DATASET.NUM_WORKERS 8 (only works for Non-DALI dataset)
DATASET.DEVICE_ID the list of devices used to distributaed the data loading (only works for apex parrellel training))
DATASET.MULTISCALE list of image size used for multiscale training

DATASET.PREPROC

DATASET.PREPROC parameters discription
DATASET.PREPROC.MEAN float, the mean for normalization
DATASET.PREPROC.STD float, the std for normalization
DATASET.PREPROC.CROP_SCALE list, the lower and upper bounder size for ssd random crop
DATASET.PREPROC.CROP_ASPECT_RATIO list, the lower and upper bounder aspect ratio for ssd random crop
DATASET.PREPROC.CROP_ATTEMPTS int, the numbder attempts to do the ssd random crop
DATASET.PREPROC.HUE_DELTA float, hue delta
DATASET.PREPROC.BRI_DELTA float, brightness delta
DATASET.PREPROC.CONTRAST_RANGE list, the lower and upper bounder for contrast
DATASET.PREPROC.SATURATION_RANGE list, the lower and upper bounder for saturation
DATASET.PREPROC.MAX_EXPAND_RATIO float, the max expand ratio for padding

Others

Others parameters discription
EXP_DIR the export dir
LOG_DIR the log dir
RESUME_CHECKPOINT The checkpoint used to resume
PHASE The phases
DEVICE_ID the list of devices used to distributaed the model training